翻訳と辞書
Words near each other
・ Block Starz Music
・ Block statue
・ Block structure
・ Block suballocation
・ Block to Block
・ Block Tower
・ Block trade
・ Block Truncation Coding
・ Block U
・ Block upconverter
・ Block v. Hirsh
・ Block voting
・ Block walking
・ Block warden
・ Block wargame
Block Wiedemann algorithm
・ Block, Illinois
・ Block, Tennessee
・ Block-booking
・ Block-Heads
・ Block-matching algorithm
・ Block-oriented terminal
・ Block-stacking problem
・ Block-transfer instruction
・ Blockade
・ Blockade (1928 film)
・ Blockade (1938 film)
・ Blockade (2006 film)
・ Blockade (board game)
・ Blockade (disambiguation)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Block Wiedemann algorithm : ウィキペディア英語版
Block Wiedemann algorithm
The block Wiedemann algorithm for computing kernel vectors of a matrix over a finite field is a generalisation of an algorithm due to Don Coppersmith.
== Coppersmith's algorithm ==

Let M be an n\times n square matrix over some finite field F, let x_}. Consider the sequence of vectors S = \left(Mx, M^2x, \ldots\right ) obtained by repeatedly multiplying the vector by the matrix M; let y be any other vector of length n, and consider the sequence of finite-field elements S_y = \left(\cdot x, y \cdot Mx, y \cdot M^2x \ldots\right )
We know that the matrix M has a minimal polynomial; by the Cayley–Hamilton theorem we know that this polynomial is of degree (which we will call n_0) no more than n. Say \sum_^ p_rM^r = 0. Then \sum_^ y \cdot (p_r (M^r x)) = 0; so the minimal polynomial of the matrix annihilates the sequence S and hence S_y.
But the Berlekamp–Massey algorithm allows us to calculate relatively efficiently some sequence q_0 \ldots q_L with \sum_^L q_i S_y()=0 \forall r. Our hope is that this sequence, which by construction annihilates y \cdot S, actually annihilates S; so we have \sum_^L q_i M^i x = 0. We then take advantage of the initial definition of x to say M \sum_^L q_i M^i x_^L q_i M^i x_{\mathrm {base}} is a hopefully non-zero kernel vector of M.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Block Wiedemann algorithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.